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Machine Wormhole Background

Malene Steen Nielsen Flagga 1

Received November 12, 1998

Is time travel possible? While this paper does not answer the question, it does
put forward a model that may one day answer it. The decoherent-histories approach
to quantum mechanics is used in a nontrivial background provided by a wormhole
whose mouths reside in the same universe, but have a time difference between
them. A charged scalar particle approaches the wormhole mouth in the present
and is decohered spatially through the interaction with the Coulomb field of the
wormhole mouth.

We start by reviewing the differential geometric setting for the matter

fields, then discuss the wormhole metric and the time machine. Then we

move on to the covariant derivates associated with the principal bundles

erected to account for gauge and Lorentz transformations. Then the Lagran-

gian is discussed before we introduce the smeared position basis upon which

the matter fields will be expanded. Then we come to the decoherent histories

and the decoherence of the density matrix, and discuss how to handle evolution

through causality-violating areas, as would be an area containing a time

machine wormhole. Then we study the spatial decoherence of the matter

field through the interaction with the charged wormhole mouth, in an attempt

to localize the field before it would enter the wormhole. Finally, we discuss

the effects the time machine has on such concepts as entropy and the direction

of time.

1. THE MATTER FIELDS

Let M be a 4-dimensional manifold with charts {U i} and coordinate

functions w i , with TM denoting the tangent bundle . We need a suitable
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topology on our spacetime M of events f 2 1(x m ). Let I +(m) denote the chrono-

logical future for m and I 2 (m) the chronological past. We then write m ¿

n to indicate that there exists a future-directed chronological curve from m

to n [note that m ¸ I 6 (m)]. Inspired by the Alexandrov topology,(10) we

define a basis for our topology as the set 8, consisting of the open subsets

of M of the form

U i,x ,y 5 {m P M ) n ¿ m ¿ r} 5 I +
(n) ù I 2 (r)

We work with charged spin-0 particles. Had we chosen fermions, it

would require a calculation of the first two Stiefel±Whitney classes in an

environment described by the wormhole metric
(11)

which we introduce in the

next section, a calculation which is beyond the scope of this article.
2

By

working with spin-0 particles we avoid long and tedeous calculations and

stick to the relevant physics. For our charged scalar matter fields, we erect

a line bundle which is associated to both the frame bundle FM and to the

principal bundle P(M , U(1)). These scalar fields are also sections c : M ®
L as c (x) 5 ^ x ) c & P Lm . The equation

c (m) 5 c m 5 ^ m ) c & (1)

shows that ^ m ) is a functional on the set of sections, that is, ^ m ) : G (M , LM )
® C , although this is a complicated way of viewing M .

The line bundle G (M , LM ) ’ * ’ +2(M ) is the state-vector space for

our scalar fields. It is obvious that the association of G (M , LM ) to P (M , U(1))

is the equivalence class saying that we identify two fields iff they only differ

by a gauge. The association to P(M , SO(3, 1)) (the sections in the bundle of

Lorentz transformations) is rather trivial since the scalar fields in G (M , LM )

carry the trivial representation of SO (3, 1).

Since particles can appear and reappear as they travel through the worm-

hole, the need for second quantization is obvious. Both the scalar field and

the electromagnetic potential will be expanded on complete sets of states,

and the coefficients will be operators. In ordinary quantum mechanics the

generalised coordinates are

c , c * P G (M , LM ), ! P u(1) ^ V 1
(M )

and the configuration space is

#(M ) 5 71
( G (M , LM ) % V 1

(M ) ^ u(1))

Where the notation is that 71
(M ) of a set M is a set of the functions on M

and their first time derivatives. The phase space is a little tricky to construct,

but it has the form

2 It is a general requirement that for a manifold to admit a spin bundle, the second Stiefel±Whitney
class must be trivial.
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3( S ) 5 T*( G ( S , C ) % V 1( S ) ^ u(1))

where we have replaced M by the three-dimensional spacelike hypersurfaces

( , expecting spacetime to be nontriv ial. Here V 1( ( ) is the set of one-forms

on ( and u(1) the Lie algebra belonging to the group Lie group U(1).

To get the configuration space and phase space for the second-quantized

fields, we must construct the Fock space for our theory, the vector space

spanned by all possible states created by the creation and annihilation opera-

tors, bÃ, bÃ² for the fields:

^(*) 5 % n P N 0 * ^ n (2)

5 % n P N 0 ^n

(where we make the identification *0 5 C ). Using

bÃ, bÃ² : ^n ® ^n 6 1 (3)

we have

bÃ, bÃ² P % n P N 0(
Å̂

n 6 1 ^ ^n) , ^(*) ² ^ ^(*) (4)

So in going from classical variables to quantum variables (or second-quantiz-

ing), the configuration space is changed from #(M ) to ^(*).

The same result could have been achieved by starting with G (M , LM ).

Since c P G (M , LM ), when second-quantizing this field we get an operator-

valued section:

c ÃP G Ã(M , LM ) 5 @ ^ G (M , LM ) (5)

where we have introduced the algebra @ as a set of operators spanned by

the creation and annihilation operators. In our curved spacetime we shall use

@(U i) 5 span{bÃ² ( f ), bÃ( f ) ) f P C `
c (U i)}. The last term in Eq. (5) can be

written

@( G (M , LM )) 5 % `
n 5 0 @ ^ n( G (M , LM ))

5 @ G (M , LM ) 1 @@ G (M , LM ) 1 . . .

5 ^(*) (6)

An important thing in Eq. (4) is that we have already taken into account

the possible subspaces of * generated by an observable. Commonly bÃand

bÃ² are encountered as, e.g., bÃ(k) and bÃ² (k8), when momentum or plane wave

states are chosen. This splits the Hilbert space into subspaces, each character-

ized by the momentum k of the plane wave. Other choices for the basis upon

which we expand our matter field are possible, and here we shall use a

ª smearedº position basis.
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What we have constructed is an operator space ^(*) 5 % n P N 0 * ^ n

over our Hilbert space * and introduced operators bÃ² and bÃthat act on the

Hilbert space and satisfy

[bÃ(g), bÃ² ( f )] 5 ^ g ) f & , f, g P C `
c (U i) (7)

where the demands that f, g be infinitely differentiable and have compact

support ensure that the inner product exists in *. If we take, for example,

f 5 e 2 ikx and g 5 e 2 ik8x in the momentum space representation, we find

[bÃ(
­

k ), bÃ² (
­

k 8)] 5 ^ eikx ) e 2 ik8x & 5 d ­
k

­
k 8 (8)

which is a well-known result.

2. THE WORMHOLE

We now come to the introduction of the wormhole in our spacetime

manifold M and the effect this has on the open coverings. Two things must

be taken into consideration:

x The metric must accurately describe a wormhole and be free of

event horizons.

x Away from the wormhole throat, spacetime must tend to asymptotic

simplicity. That is, away from the wormhole we should recover a flat

spacetime.

2.1. Definitions and Energy Conditions

Definition 1. If a Lorentzian spacetime contains a compact region V ,

and if the topology of V is of the form V 5 R 3 ( , where ( is a 3-manifold

of nontrivial topology, whose boundary has topology of the form ­ ( , S 2
,

and if furthermore the hypersurfaces ( are all spacelike, then the region V
contains a quasi-permanent intra-universe wormhole.(13),3

For the wormhole to be traversable we must further demand that it

contain no event horizon, which amounts to demanding that there must be

no curvature singularities in the Riemann tensor (which is indeed the case

3 By intra-universe is meant a wormhole that connects two regions of the same universe, as
opposed to an inter-universe wormhole, which connects two different universes. Wormholes
can also be permanent, quasi-permanent, or transient. If we slice a region of spacetime into
spacelike hypersurfaces and each slice of space contains a wormhole, then the wormhole can
be thought of as existing throughout a certain duration of time. These are quasi-permanent
wormholes. A wormhole that is considered to exist throughout the lifetime of the universe is
permanent, while transient wormholes pop into and out of existence without not even locally
having a topologically structure of the form V . R 3 ( . Transient wormholes are intrinsically
four-dimensional objects.
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with the metric with which we shall work (5)) and that the Riemann tensor is

not too large. Since we work with a charged scalar field, it can withstand

rather harsh tidal forces, but too large a Riemann tensor may, in a sense, rip

the field apart or delocalize it.

2.2. Metric Considerations

Wormhole geometry is best approached using the Wheeler ± Thorne

wormhole ,(13)

ds2 5 e2 F (l) dt2 2 dl2 2 r 2
(l)[d u 2 1 sin

2 u d 2 f ] (9)

where the variable l is the proper radial distance and r(l) is the radius of

spherical shells surrounding the wormhole. An observer A placed at a safe
4

distance will measure the distance l to the ª centerº of the wormhole, while

an observer B moving toward this center will measure the radial distance

r(l). As long as B is sufficiently far away from the geometrically nonsimple

area, he will measure the same distance to the center as A. This is expressed as

lim
l ® 6 `

r(l)

) l ) 5 1 (10)

As B approaches the ª centerº of the wormhole he will observe his radial

distance to the center decreasing until he reaches min r(l) 5 r0, the radius

of the wormhole throat. Even though B still feels as if he is moving on a

straight line, his radial distance to the ª centerº will then increase again. He

has completed a trip through the wormhole.

The function F (l) is known as the redshift function, and it is easily seen

that the redshift function tells us how time and proper time are related.

We could then proceed and calculate the Riemann tensor and solve the

Einstein equations, but doing our calculations using (9) is not an easy task.

It is easier first to work in a combined Schwarzchild±Reissner±NordstroÈ m

geometry (since we also want the wormhole mouth to be charged), and then

simply reparametrize the functional dependence of the metric, meaning that

instead of having the metric as a functional of l, we have it as a functional

of r 5 r(l). This is done by using dl/dr 5 1/[1 2 b(r)/r], where b(r) is known

as the shape function:

ds2 5 e2 F 6 (r) dt2 2
dr 2

1 2 b 6 (r)/r
2 r 2[d u 2 1 sin2 u d 2 f ] (11)

where the proper radial distance l is related to the radial distance r as

4 By ª safeº I mean in the asymptotically flat region of spacetime (see Section ).
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l(r) 5 6 #
r

r0

dr8

! 1 2 b 6 (r8)/r8

x The proper radial distance l covers the range [ 2 ` , 1 ` ], while if we

work with the r coordinate we exchange this for two coordinate patches each

covering the range [r0, ` ].

x We have replaced the two functions F (l) and r(l) in ref. 9 with the

four functions F +(r), F 2 (r), b+(r), and b 2 (r); this is not an increase in the

number of parameters, since their domains have been halved. We use F +(r)

and b+(r) when we are on one side of the wormhole (the 1 side), and F 2 (r)

and b 2 (r) when we are on the other side (the 2 side).
5

In his book on wormholes, Visser(13) moves on to introduce certain

constraints on the redshift and shape functions to ensure that the wormhole

is traversable in principle. These restrictions are met with
(5)

b 6 (r) [ 2GM 6 2
Q2

6

r
(12)

F 6 (r) [ log 1 1 2
b 6 (r)

r 2 (13)

since

b 6 (r)

r
® 0 for r ® `

Þ log 1 1 2
b 6 (r)

r 2 ® 0 for r ® ` (14)

Þ 2 F 6 (r) ® 0 for r ® ` (15)

Þ e2 F 6 (r) ® 1 for r ® `

The difference between being ª traversable in practiceº as opposed to ª travers-

able in principleº is whether or not one includes tidal effects for the wormhole.

This can be done by writing down two inequalities. The first of these inequali-

ties is a constraint on the gradient of the redshift function F (r), while the

second effectively is a constraint on the speed with which the traveling object

can safely traverse the wormhole.(n)

If we look at the metric we have used thus far, it is not hard to construct

a time machine; it actually appears as if it is the generic fate of wormholes

5 When we later turn the wormhole into a time machine, the 1 side will represent the wormhole
mouth in the present, and the 2 side the wormhole mouth in the past.
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that they evolve into time machines.(13) The quick argument is simply that

since the two mouths of the wormhole reside in ª differentº parts of the

universe, it is not hard to imagine that a certain acceleration takes place

between the relative positions of the mouths, thus leading to a time shift.

3. A NOTE ON THE COVARIANT DERIVATIVES

It is important to understand the connection !i m for the U(1) principal

bundle here since it gives rise to a change in the derivatives as

­ m ® D m 5 ­ m 1 r (Aa
m Ta) (16)

where r is the representation of the transformation group. In our case we

have two transformations groups: U(1) for the gauge transformations and

SO (3, 1) for the Lorenz transformations. The associated bundle containing

the matter field thus shares transition functions with both the tangent bundle ,

viewed as the principal bundle P(M , SO(3, 1)), and the U(1) principal bundle.

In QED it changes the derivative to

­ m ® D m 5 ­ m 2 ieA m

with A 5 A m dx m , while if we couple to a gravitational field, we have

­ m ® ­ m 1 G a
m bT

b
a

with A 5 G a
m b dx m T b

a. It is evident here that the roles played by the indices

a, b, and m are very different: m is the V 1(M ) index, while a and b are

62(3, 1) indices.

We thus have

D P TM ^ U(1) ^ SO(3, 1) ^ $ (17)

where $ denotes the set of derivatives. Since we work in a background

consisting of both the gravitational field g m n and an electromagnetic field A m ,

the derivatives should in general be changed to covariant derivates taking

the two different connections into account. However, the scalar matter fields

carry the trivial representation of the Lorentz group SO (3, 1) and thus it is

only the electromagnetic connection that will appear in the covariant deriva-

tive. This would not have been the case had the fields been spinors.

Since the wormhole is charged, there are two ª kindsº of electromagnetic

potentials. One, which we shall term Acl
m (x), is the electric background field

from the wormhole, the Coulom b field, and Ag
m , is the electromagnetic quan-

tum field, or vacuum fluctuations, responsible for creating and annihilating

photons. The electromagnetic background field is stationary, so we have

Acl
m 5 (Acl

0 ,
­

0 ) 5 Acl
0 ,



2128 Flagga

A m (x) 5 A cl
m 1 A g

m (18)

giving rise to a covariant derivative of the form

DÄ m 5 ­ m 2 ie(A cl
m 1 Aq

m ) (19)

The classical field simply gives rise to corrections in the Hamiltonian, in

effect raising the zero-point energy.

Discarding second-order and higher terms in the electromagnetic poten-

tial, we now have the Lagrangian

+ c ,0x) 5 ! 2 g [g m n DÄ *m c *(x)DÄ n c (x) 2 (m2 1 j R) c *(x) c (x)]

5 ! 2 g [g m n ( ­ m 1 ieA m (x)) c *(x)( ­ n 2 ieA n (x)) c (x)

2 (m2 1 j R) c *(x) c (x)] (20)

We also need to take into account the electromagnetic photon field. This

is done, as usual, by adding the term

+em(x) 5 ! 2 g F 2
1

4
F m n (x)F m n (x) G

5 ! 2 g
1

4
[2F0 i(x)F 0 i

(x 2 F ij(x)F ij
(x)] (21)

giving us the full Lagrangian for the theory as

+(x) 5 ! 2 g F g m n ( ­ m 2 ieA m (x)) c *(x)( ­ n 1 ieA n (x)) c (x)

2 (m 2 1 j R ) c *(x) c (x) 2
1

4
F m n (x)F m n (x) G (22)

The full action for the theory

S[ c , ­ c ] 5 # dt d 3x ! g +( c (x), ­ c (x))

5 # d 4 x ! g F 1

2
g m n DÄ m c *(x)DÄ n c (x)

2 (m2 1 j R ) c *(x) c (x) 2
1

2
F m n (x)F m n (x) G (23)

will, by variation with respect to the matter fields c *(x) and c (x), give the

Euler±Lagrange equations, which give the Klein±Gordon equation. For c (x)
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d S 5 # ! g d 4x [g m n ( d (D m c *)D n c ) 2 (m 2 1 j R ) c ( d c *)] 5 0 (24)

Using that d (D m c ) [ D m ( d c ) and performing the integrations by parts,

we get

# d 4x ! g [g m n D m ( d c *)D n c ]

5 F d c *
­ +

­ (D m c *) G 1 `

2 `

2 # d 4x ! g
1

! g
( d c *)D m

­ +

­ (D m c *)
(25)

Note that since the measure in the action integral is ! g d 4x, we have

had to add the term ! g(1/ ! g) in the last term! This finally gives

d S 5 # d 4x ! g F 1

2

1

! g
D m ( 2 ! gg m n D n c (x))

2 (m 2 1 j R ) c (x) G d c *(x 5 0 (26)

or

1

! g
D m ( ! g g m n D n c (x)) 1 (m2 1 j R) c (x) 5 0 (27)

3.1. The Smeared Position Basis

The ª smearedº position basis is introduced for two reasons. We cannot

expand our fields on the plane wave basis since we are in curved space. The

problem is that we have no well-defined global vacuum, and as a result no

ª ground statesº are globally defined. Since we are interested in localizing

our fields within a certain range of probability, we turn our attention to

characteristic or indicator functions for the chronological sets (defined in

Section 1), that is,

^ x ) 1U i & 5 1U i(x) 5 H 1 if x m P U i

0 if x m ¸ U i

This basis is obviously ª overº complete, so we make no assumption

of its orthonormality. The indicator functions are discontinuous, but from

distribution theory (12) we can take functions { x U i} defined as6

6 The proof can be found in Rudin’ s book on functional analysis(12) and is a result of the
Hahn±Banach theorem. There, however, M 5 R n. Generalizing it to curved spacetimes is
done by ª pullingº the open subsets of R 4 back to our manifold M using the chart maps w .
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x U i(x) 5 5
1 if r 2 # ) x ) # r+

]0; 1] if R 2 # ) x ) # r 2 or r+ # ) x ) # R+

0 R 2 $ ) x ) $ R+

(28)

As mentioned, we have no orthonormality. What we do have is

^ x U i ) x U j & 5 # U i ù U j

! 2 g d 4x 5 Vol(U ù V )

which is equal to zero if U i ù U j 5 0¤ and for i 5 j equal to the volume of

the set.

We now simply expand the matter fields c Ã(x) P @(*) in the usual

manner:

c Ã(x) 5 o
j

x U j ^ x U j ) c (x) &

5 o
j

bÃ
U j(t) x U j(

­
x ) (29)

Similarly we get for c Ã*(x) that

c Ã*(x) & 5 o
i

bÃ²
U i(t) x U i(

­
x ) (30)

The operators bÃ²
U i(t)[bÃ

U j(t)] create (annihilate) particles in the sets U j (U i) at

time t. Their commutator is

[b x U i
(t), b ²

x U j
(t)] 5 ^ x U i ) x U j & (31)

The electromagnetic field Aq
m (x) is also expanded on the basis { x U i} as

AÃm (x) 5 o
l

[ e k
m aÃk U l(t) x U l(

­
x ) 1 e k *

m aÃ²k U l(t) x Å U l(
­

x )]

5 o
l

[aÃm U l(t) x U l(
­

x ) 1 aÃ*m U l x U l(
­

x )] (32)

In the follow ing we use the notation

b i [ bÃ
U i(t),

b ²
i [ bÃ²

U i(t),

x i [ x U i,

a m
l [ e m aÃ

l(t)

3.2. The Legendre Transformation

To be able to use the decoherent histories which will be introduced in

Section 5, we first make the transformation from configuration space to phase



Decohering a Charged Scalar Field in a Time-Machine Wormhole Background 2131

space. In going from the Lagrangian picture to the Hamiltonian picture, we

should specify the fields only on 3-surfaces. Let U i , M be a chronological

set from the topology t (8) and s a space like hypersurface. Then let K i be

defined as

Ki 5 U i ù s (33)

Due to the definition of U i , K i will be a 3-sphere contained in both s
and U i. If x U i 5 U( s i , s j) x U j, then clearly U i must belong to the future domain

of dependence of U j. It will be easier to work, however, with K i as unit balls

since then we can use

Vol(Ki) 5 1 and Ki , K j Þ K i 5 K j (34)

Later we will let K v denote the entire causality-violating area, while

K v 1 will denote the set containing the wormhole mouth in the present and

K v 2 denotes the set containing the wormhole mouth in the past. Obviously

K v 1 , K v and K v 2 , K v .

We previously established the form of the Lagrangian as

+(x) 5 ! g F g m n (D m c *(x)D n c (x)) 1 ie ­ m c *(x)A cl
0 (x) c (x)g m 0

2 ieAcl
0 (x) c *(x) ­ n c (x)g0 n 2 (m2 1 x R) c *(x) c (x)

2
1

4
(2F 0iF

0 i 2 F m n F
m n ) G (35)

The canonical momentas are then found as usual by

p (x) 5
­ +

­ c Ç (x)
5

­ +

­ ­ 0 c (x)

5 ! g[ ­ 0 c *(x) 2 ieA0(x) c *(x) (36)

p *(x) 5
­ +

­ c Ç *(x)
5

­ +

­ ­ 0 c (x)

5 ! g[ ­ 0 c (x) 1 ieA0(x) c (x)] (37)

The canonical momenta for the A m field are found in a similar manner:

p m (x) 5
­ +

­ ( ­ 0A
m )

5 ! gF 0 m (38)

Rearranging the above equations gives
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c Ç *(x) 5
1

! g
g00 p (x) 2 ieA0(x) c *(x) (39)

c Ç (x) 5
1

! g
g00 p *(x) 1 ieA0(x) c (x) (40)

AÇ m (x) 5 F0 m 1 ­ m A0 5
1

! g
p m 1 ­ m A 0 (41)

The Hamiltonian density is then found as

* 5 *(0) 1 * (1)

5 ! g 2g00 c Ç *(x) c Ç (x) 2
1

! g
+ c (42)

1 g00gij(2F 0j F0i) 2
1

! g
+A

To keep the notation simple, we shall introduce the measure

d 4m(x) 5 ! g d 4x

4. THE DENSITY MATRIX

An elegant and very useful way of representing a state without the phase

arbitrariness is to characterize it by a Hermitian matrix r , defined for a pure

state ) C (x & by

r 5 ) C (x) & ^ C (x) ) (43)

which obeys tr r 5 1. This matrix is called the density matrix, and it plays

an important role later when we embark on the decoherent±histories approach

to quantum mechanics. According to the probability doctrine of quantum

mechanics, its know ledge exhausts all that we can find out about the state.(9)

If A is an observable for the system, then the expectation value of A is

^ A & 5 tr( r A) 5 tr(A r ) (44)

The action of this matrix is

r : * ® *, r : * ² ® * ² (45)

Somewhat cryptically r can be said to be a Hilbert-space-valued linear

functional on the Hilbert space, that is,

r P * ^ * ²
(46)

or, since * ² 5 *,
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r P * ^ * (47)

The density matrix is also useful in the definition of missing information,

entropy, of a system, since we can define this as

S 5 2 tr[ r ln r ] (48)

5. DECOHERENCE AND DECOHERENT HISTORIES

Handling quantum mechanics in curved spacetimes requires care. A way

out of the problems appears to be a mix of decoherence, decoherent histories,

and nonunitary evolution, which I shall present below. Both decoherence and

decoherent histories are concerned with the emergence of an approximately

classical universe from an underlying quantum one without having to deal

with the details of observers, measuring devices, or the collapse of the wave

function. But while decoherence, studied in the next section, is concerned with

the quick dispersal of phase information representing interference between

different states in a superposition among a set of ignored variables that

interacts with some followed variables, which is local in time, the decoherent

histories studied in Section 5.2 have variables specified on a sequence of

spacelike hypersurfaces and are not local in time. The decoherent-histories

formalism also tries to supply a quantum mechanical framework for reasoning

about the properties of a closed system . In that way it is a predictive formula-

tion of quantum mechanics for genuinely closed quantum systems that is

sufficiently general to cope with the needs of quantum cosmology. (8) What

replaces the notion of measurement is the more general and objective notion

of consistency (or the stronger notion of decoherence), which determines

which stories may be assigned probabilities.
(8)

It should also be noted that

this approach to quantum mechanics does not contradict the Copenhagen

interpretation of quantum mechanics; it is simply the way it is interpreted

that is different.

5.1. Decoherence of the Density Matrix

According to the SchroÈ dinger equation, an initially free wave packet

such as our matter field for t ® 2 ` would spread over time, thereby increasing

its size and extending its coherence properties over a larger region in space.

The superposition of partial waves thus seems to make it impossible to ask

if our charged scalar particle entered the wormhole or not, since it is not

localizedÐ or we may be faced with the problem that only ª partº of the

wavepacket entered the wormhole.

But the spreading of the wavepacket is known to be negligible for large

masses or other macroscopic properties. For example, the position of a dust
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particle becomes ª classicalº through scattering of a very large number of air

molecules and photons acting together like a continually active position

monitor (a ª measuring deviceº ). Phase relations between different positions

are continually destroyed (or rather delocalized into the environment) in

this manner.(7)

Superpositions of macroscopically different properties (like position)

can be shown (7) to disappear from the density matrix describing the system

(i.e., r nm 5 0 for n Þ m) on short time scales. This is basically what is meant

by decoherence.

Even objects which are usually regarded as ª microscopicº can acquire

classical properties very rapidly due to the formation of quantum correlations

with their environment. Quantum mechanical interference disappears if, for

example, the passage through the slits of an interference experiment is mea-

sured. In this case the frequencies of events on the detection screen following

a certain passage can be counted separately, and must thus simply be added.

So interference should therefore disappear when the passage is measured

without anybody ever looking at the result. This means that the outcome

(here, a certain passage) can be assumed to have become a ª classical factº

as soon as the measurement has irreversibly occurred. That is, properties of

quantum objects ª come into beingº (or ª occurº ) in an irreversible act by

their measurement (not their observation as such). Decoherence is therefore

expected to counteract interference.

An initially factorizing state will in general not keep this property if

some kind of interaction is present, but will evolve into an entangled one.

This evolution leads to a behavior of a subsystems density matrix or the

reduced density matrix, which may be quite different from the properties the

system would show in isolation. Giulini et al.(7) give a good example of this,

which we shall go through here: A ª measurement-like processº is one in

which a system acts on its environment in a certain way, while the backreaction

from the environment on the system is negligible small (for example, when

an electron scatters off a heavy atom, the recoil from the heavy atom can

be considered negligible). It is the interaction between the system and its

environment which is ª measurement like,º and no collapse is assumed. If

the interaction is of the von Neumann form

H I 5 o
n

) n & ^ n ) ^ AÃ
n (49)

where AÃ
n are n-dependent operators acting only in the Hilbert space of the

environment and ) n & is an eigenstate of the ª observableº measured by this

interaction, ) n & will not change during the interaction while the environment

acquires ª informationº about it. That is, the environmental states (denoted

by ) F n & ) change in an ª ) n & -dependentº way:
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) n & ) F 0 & ®
t

e 2 iH It ) n & ) F 0 & 5 ) n & e 2 iAÃ
nt ) F 0 & [ ) n & ) F n(t) & (50)

The resulting environmental states ) F n(t) & are generally called ª pointer

positions,º although they do not need to correspond to any states of a measure-

ment devices. They are simply the states of the ª rest of the world.º

The SchroÈ dinger equation now yields

1 o n cn ) n & ) ) F 0 & ®
t

o
n

(cn ) n & ) F n(t) & 2 (51)

that is, a correlated state representing a superposition of all ª measurement

results.º The local density matrix (the density matrix of the subsystem)

changes accordingly:

r S 5 o
n ,m

c*mcn ) m & ^ n ) ®
t

o
n, m

c*mcn ^ F m ) F n & ) m & ^ n ) (52)

The nondiagonal elements of the local density matrix (which in this basis

are defined by the interaction) are thereby multiplied by a factor which is

given by the overlap of pointer states corresponding to the respective quantum

numbers. Diagonal elements are unchanged. If the environm ental states are

orthogonal,

^ F m ) F n & 5 d nm (53)

that is, if the environment discriminates among states, the system density

matrix becomes diagonal in this basis:

r S ® o
n

) cn ) 2 ) n & ^ n ) (54)

During this evolution, the interference terms (the nondiagonal elements) are

destroyed locally (they are delocalized) in this basis, which is defined by the

interaction Hamiltonian. This means that the phase relations characterizing

the superposition become inaccessible for local observations .

5.2. Decoherent Histories

Spacetime must be foliable by spacelike hypersurfaces before the quan-

tum mechanics of matter fields can be formulated in terms of unitarily evolving

state vectors defined on spacelike hypersurfaces.(9)

If this foliation is possible, we can use the time coordinate to globally

decompose the (1 1 3)-dimensional Lorentzian metric via the Arnowitt ±

Deser ± Misner (ADM) split
(13)



2136 Flagga

g m n (t,
­

x ) 5 1 2 (N 2 2 gij b i b j) b j

b i g ij 2 (55)

The entries in this matrix are

N(t,
­

x ), the lapse function;
­

b (t,
­

x ), the shift function; and

gij(t,
­

x ), the metric of the spacelike hypersurfaces.

N and b describe how the spacelike hypersurfaces are assembled to form

spacetime, while g ij naturally describes the three-geometry of space.

In a spacetime with closed timelike curves, this foliation by spacelike

hypersurfaces is no longer possible, and we need a more general formulation

of our quantum field theory. An elegant formulation has been put forward

in a paper by Hartle(9) in which he describes a generalized quantum theory

whose probabilities consistently obey the rules of probability theory even in

the presence of an area containing closed timelike curves.

In the SchroÈ dinger picture, an exhaustive and exclusive set of alternatives

(events) defined on a spacelike surface ( (or at time t when spacetime is

foliable) corresponds to a set of idempotent, self-adjoint positive operators,

that is, a set of projection operators {P a } with P a P B (*), the algebra of

bounded operators on * satisfying at each moment (on each spacelike

hypersurface)

o
a

P a 5 1, P a P b 5 d a b P b (56)

These projections correspond to a ª propositionº or ª eventº and a piori act

on the Hilbert space for the entire system (e.g., matter field and electromag-

netic field), thereby producing an appropriate subspace of this Hilbert space.

These subspaces may be states describing ª the position of x of the field to

lie within the range D x,º ª its momentum p to lie within the range D p,º or

ª its spin to point in the z direction.º

On each of the spacelike surfaces s 1, . . . , s n corresponding to times

t1, . . . , tn when spacetime is foliable, we specify sets of alternatives (events)

{P 1
a 1}, {P2

a 2}, . . . , {Pn
a n}

so the set {P1
a 1} acts on the Hilbert space * at time t1, the set {P2

a 2} acts on

the Hilbert space * at time t2, etc.

The formal definition of a history is given by a ª time-orderedº sequence

of quantum alternatives (events):
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C a 5 Pn
a n(tn)P

n 2 1
a n 2 1(tn 2 1) ? ? ? P1

a 1(t1) (57)

with a ª time-orderingº 7 tn . tn 2 1 . ? ? ? . t1. The subscript k in Pk
a k(tk) denotes

the set of projectors for the surface ( k ,
8

and a k denotes the particular alterna-

tive which has been chosen; k could be for example, space projection and

a k could be D x. So a particular history corresponds to a particular sequence

of alternatives a 1, . . . , a n , and we shall use the shorthand notation a 5 ( a 1,

. . . , a n).

From simple quantum measuring systems we already know that a certain

ª coarsenessº of probabilities is needed in the description if the behavior of the

system is to become approximately classical. A good example is Heisenberg’ s

uncertainty relations, which effectively limit the precision with which position

and momentum can be measured at the same time. Coarse-graining can be

achieved by splitting the Hilbert space variables into ª ignoredº or ª environ-

mentº variables and ª followedº or ª systemº variables. This split is possible

if the backreaction from the environment onto the system is negligible. By

a coarse-grained history we then mean a history for which (1) not all the

variables are specified, a coarse-graining I call first type, and (2) the variables

that are specified are not specified at each and every instant (or on each and

every spacelike hypersurface) or only with an arbitrary precision, a coarse

graining I refer to as second type.

A coarse-graining of the ª second typeº can be achieved by defining

partitions of the histories { a } into classes { a }. That is, a history belonging

to { a } is a whole set of histories contained in { a }. We can represent a coarse-

grained set of histories by the operators C a , with

C a Å 5 o
a P a Å

C a 5 o
( a 1,. ..,a n ) P a Å

P n
a n(nn) ? ? ? P1

a 1(n1) (58)

The smeared position basis (28) introduced at the end of Section 3 is

also an example of the second type of coarse graining. Instead of asking for

the exact value of the field for all m P M , we ask for the value on the field

on an entire subset of M .

Under what circumstances, then, is it possible to assign probabilities

to histories? Since the probability for a single ª eventº a k is given by the

usual formula,

7 The ª distanceº between the spacelike hypersurfaces is not arbitrary. When studying the
decoherence of the density matrix through interaction with the environment, a decoherence
time scale tdec is defined. In a scattering process where k is the wave number, Nv/V the
incoming flux, and s eff is of the order of the total cross section for the scattering, the localization
rate L , which governs the destruction of coherence between different positions, is L 5
k2Nv s eff/V, and the decoherence time scale over a distance D x 5 x 2 x8 is tdec 5 1/ L ( D x)2.
Therefore the ª time differenceº s 2 2 s 8

1 should be chosen larger than tdec.
8 Or a time tk when we can use the time parameter.
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pk 5 ^ Pk & 5 tr[P ²
k r 0Pk] (59)

with r 0 denoting the initial density matrix, the obvious generalisation to a

history C a is

p( a ) 5 tr[C ²
a r 0C a ] (60)

But a quantum theory of a closed system does not assign probabilities

to every set of coarse-grained histories. A good example is the double-slit

experiment. If a denotes the passage through the upper slit and b the passage

through the lower slit, we can write a coarse-grained history given by just a

sum of two histories:

C a Å 5 C a 1 C b (61)

The probability for the coarse-grained history C a Å , asking for the probability

that the particle went through either the upper and lower slit, would then be

p(C a Å ) 5 p(C a ) 1 p(C b ) 1 2 Re tr[C ²
a r 0C b ]

Þ p(C a ) 1 p(C b ) (62)

The quantum mechanics of a closed system can only assign probabilities to

members of sets of alternative, coarse-grained histories for which there is

negligible interference between the individual histories. This can be caused

by the system’ s dynamics or boundary conditions.

Equation (62) motivates the introduction of the decoherence functional,

which is a functional of two histories a and a 8, and in a sense ª measures

the interferenceº :

$( a , a 8) 5 tr[C ²
a r 0C a 8]

5 tr[Pn
a n(tn) ? ? ? P 1

a 1(t1) r 0P
1
a 81 ? ? ? P n

a 8n(tn)] (63)

or, written in the SchroÈ dinger picture , using

Pk
a k( s k) 5 U ² (tk 2 1, tk)P

1
a 1U(tk 2 1, tk) (64)

we have

$( a , a 8) 5 tr[Pn
a nU(tn , tn 2 1)P

n 2 1
a n 2 1

? ? ? P1
a 1U(t1, t0) r 0P

1
a 81U(t0, t1) ? ? ? Pn 2 1

a n 2 1U(tn 2 1, tn)P
n
a 8n] (65)

The operators given by
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U(tk , tk 2 1) 5 exp F 2 i # dt H(tk , tk 2 1) G 5 exp 1 2 i #
tk

tk 2 1

* d 4x 2 (66)

are unitary evolution operators between the spacelike surfaces tk and tk 2 1,

and H is the Hamiltonian. Then $( a , a ) describes probabilities if

Re $( a , a 8) 5 0, " a Þ a 8 (67)

which is is called weak decoherence or consistency, that is, there is negligible

interference between the alternatives a and the alternatives a 8. When a set

of histories decoheres weakly, the probability of a history a 5 a 1, a 2, . . . ,

a n is the corresponding diagonal element of the decoherence functional
(6)

:

p( a ) 5 $( a , a ) (68)

If Re $( a , a 8) 5 0, a Þ a 8, then these numbers will obey the sum rule of

probability theory. That this is indeed the case is easily seen; that Re $( a ,

a 8) 5 0 means that the interference terms between the two histories a
and a 8 vanish. Gell-Mann and Hartle

(6)
imposed a stronger condition which

demands that the nondiagonal elements of the whole decoherence functional

be zero:

$( a , a 8) 5 0, " a Þ a 8 (69)

which is called medium decoherence.

If $( a , a 8) 5 0, " a Þ a 8, then, as we saw above, it is possible to ask

for probabilities for a certain history. In our case it would be interesting to

find a set of decoherent histories for the system (the charged scalar field)

that contained both a history describing the field passing through the time

machine wormhole and a history describing the field simply passing by the

area, without entering the wormhole. If the probabilities for these two histories

are not the same, then nature does, in a sense, distingu ish between them. If,

e.g., the probability for the scalar field to pass through the time machine

wormhole is much smaller than the probability to pass around it, then there

would seem to be a universal law working against time travel. Unfortunately,

these calculations are long and very tedious and are not included in this article.

The following properties of the decoherence functional follow from

its definition

$( a , a 8) 5 $*( a , a 8) Hermitian (70)

o
a , a 8

$( a , a 8) 5 tr r 0 5 1 normalized, (71)

$( a , a ) $ 0 positive diagonal elements, (72)
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o
a

$( a , a ) 5 1 (73)

$( a Å , a Å 8) 5 o
a P a Å

o
a 8 P a Å 8

$( a , a 8) obeys the principle of

superposition (74)

) $( a , a 8) ) # $( a , a )$( a 8, a 8) (75)

where the last condition states that there is no interference with a history

whose decoherence functional has a vanishing diagonal element.

Decoherence implies the existence of generalized records. If (69) is

fulfilled, then the states C a ) c & are an orthogonal (but generally incomplete)

set. Therefore there exists a set of projection operators P b whose the states

C a ) c & are eigenstates,

P b (C a ) c & ) 5 d a b C a ) c & (76)

where the histories now consist of a string C a adjoined by the operator P b

at any time after the final time for the chain. The decoherence functional

then becomes

$( a , b ; a 8, b 8) 5 tr[P b C a ) c & ^ c ) C ²
a 8P b 8]

5 tr[ d a b C a ) c & ^ c ) C ²
a 8 d a 8, b 8] 5 0 (77)

This means that the joint probability is equal to p( a , b ) 5 d a , b p( a ). So

medium decoherence implies the existence of a string of alternatives b 1, . . . ,

b n , at some fixed moment in time after tn , which are perfectly correlated

with the string a 1, . . . , a n at the sequence of times t1, . . . , tn. So, adding

P b to the chain C a results in a decoherence functional that contains the joint

probability correlating the events/alternatives in the original chain C a with

the P b , which are therefore referred as generalized records (information about

the stories { a } is ª storedº here). It may be that the P b do not represent

records in the usual sense of being constructed from quasiclassical variables

accessible to us, but this means that at any time there is complete information

somewhere in the universe about the histories { a }. Thus, medium decoherence

implies the existence of a generalized record. This is actually a biimplication,

since the converse is also true.(8)

5.3. Evolution in Causality-Violating Regions

Generalizing the form of the decoherence functional (65) generalizes

Hamiltonian quantum mechanics. Let us turn to the wormhole-time machine

spacetime and assume that the nonchronal NC region is bounded. This NC
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area could be thought of as an intersection between the worldlines of the

two wormhole mouths and the future lightcone of the scalar particle from a

certain point in time and forward. Then there exist initial and final regions

of spacetime before and after the nonchronal region in which familiar alterna-

tives of the spatial field configurations can be defined on spacelike surfaces,

and we can study transition probabilities between these alternatives.

Let NC 5 Kw and restrict attention to alternatives defined on spacelike

surfaces ª beforeº NC , a region denoted (1(NC ), or in the region ^1(NC )

ª afterº the nonchronal region. Now suppose the evolution between a spacelike

surface s 2 before NC and a spacelike surface s + after NC is not described

by a unitary matrix U, but by a nonunitary matrix X . If we replace U with

X in the decoherence functional (65), it will no longer satisfy the first four

requirements in (70). But the following generalization will:

$( a , a 8) 5 N tr[(P n
a nU( s n , s n 2 1) ? ? ? Pk 1 1

a k 1 1U( s k 1 1, s +)XU( s 2 , s k)P
k
a k

3 ? ? ? U( s 2, s 1)P
1
a 1U( s 1, s 0) r 0U( s 0, s 1)P

1
a 81U( s 1, s 2)

3 ? ? ? Pk
a 8kU( s k , s 2 )X ² U( s +, s k 1 1)P

k 1 1
a k 1 1 ? ? ? U( s n 2 1 ? s n)P

n
a 8n] (78)

where

N 5 (tr(X r 0X
² )) 2 1 (79)

and we now use s k instead of tk , due to the nontriv iality of spacetime. The

surfaces s 1, . . . , s k all lie before s 2 , that is, in the region (1(NC ), while

s k 1 1, . . . , s n lie after s + in ^1(NC ). The action of the operator X is simply

to evolve from the surface s 2 to the surface s +.

The decoherence functional (78) defines a quantum theory that reduces

to the usual one (65) when the evolution is unitary, but generalizes it when

it is not.
(9)

Its advantages are that it does not violate the probability sum rule

and there is no hypersurface dependence of local probabilities.

So decoherence is concerned with decoherence of a reduced density

matrix for the system, while the decoherent-histories approach studies the

decoherence of histories of alternatives/propositions/events. As shown by

Giolini et al.,(7) both can be used under certain circumstances, and this will

prove to be very helpful in the calculations. In the SchroÈ dinger picture, the

density matrix r (t1) may be written

r (t1) 5 U(ti , t1) r (ti)U
²
(t i , t1) [ K t1

ti [ r (ti)] (80)

where K is the evolution operator for the ª path-projectedº density matrix.

We can then write the decoherence functional as
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$( a , a 8) 5 tr[Pn
a nK

tn
tn 2 1( ? ? ? P1

a 1K
t1
ti [ r (ti)]P1

a 81 ? ? ? )Pn
a n] (81)

We need to find projection operators which act only on the ª system,º that

is, is of the form Pk
a k 5 Pk(S)

a k ^ I . This is possible if the correlations between

the system and the environment only affect the dynamics of the system

instantaneously (as is the case below). We then write tr 5 tr e trS , where tr e

is the trace over the environmental degrees of freedom and trS the trace over

the system, and see if we can write

$( a , a 8) 5 trS[Pn (S)
a n KÄ tn

tn 2 1( ? ? ? P1(S)
a 1 [ r red(t1)]P1(S )

a 81 ? ? ? )Pn(S )
a 8n ] (82)

where r red 5 tr e (K
t1
t i [ r (ti)]) is the reduced density matrix, and KÄ now acts on

the system alone. This is possible if we can move the trace over the environ-

mental degrees of freedom through all the intermediate terms up to the initial

density matrix, which is exactly the case if the correlations only affect the

dynamics of the system instantaneously, as is the case treated below.

We can then make decoherent histories if the projection operator Pk(S)
a k

at time tk projects on the instantaneous eigenstates of the path-pro jected

reduced density matrix:

r S(tk) [ KÄ tk
tk 2 1[Pk 2 1(S )

a k 2 1 KÄ tk 2 1
tk 2 2( ? ? ? r red(t1)) ? ? ? Pk 2 1(S)

a 8k 2 1 ] (83)

for all k 5 1, . . . , n, because then the projectors commute with this density

matrix and therefore they only act on the RHS of r red(t1) on Pk
a 8

k to yield d kk8

[or, in our case, Vol(Kk ù Kk 8)].

We can then write the generalized decoherence functional (78) as [omit-

ting the index (S)]

$( a , a 8) 5 N tr[(Pn
a nK

Ä s n
s n 2 1( ? ? ? Pk 1 1

a k 1 1K
Ä s k 1 1
s 1 XÄ s 1

s 2 KÄ s 2
s k ( ? ? ? P1

a 1[ r red(t1)]P1
a 81)

3 ? ? ? )P k
a 8k)P

k 1 1
a k 1 1 ? ? ? )Pn

a 8n] (84)

where XÄ s 1
s 2 [ r S( s 2 )] 5 X( s 2 , s +) r S( s 2 )X ² ( s 2 , s +).

We can summarize the above by saying that to achieve probabilities for

the ª pathsº of the matter field we must go through the follow ing steps:

1. First we must investigate if a split of the Hilbert space for the whole

system allows a division into ª systemº variables and ª environmentº variables

at the initial time, that is, we see if can we write r (ti) 5 r S(ti) r e (ti).

2. We then find appropriate projection operators (a choice which is made

by hand in the theoretical description of a given process), and possibly collect

them into classes to achieve coarse-graining.

3. Then we investigate if it is possible to move the trace over the

environmental degrees of freedom all the way through to the initial density

matrix. If this is possible, the trace should be performed to get a reduced
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density matrix for the system alone, which, as shown above, makes finding

the consistent histories considerably easier, and, as will be shown below, will

help us localize the matter field before it enters the nonchronal region.

4. Then we find the form of the nonunitary evolution operator so it

adequately describes the evolution through the NC area.

5. Finally, study if $( a , a 8) 5 0, " a Þ a 8, in the set of variables we

have chosen. If this is the case, we can ask for the probability for the field

to propagate through the time machine wormhole and compare it to the

probability for the field to pass by the NC area.

6. If it is possible to find two decoherent histories, one describing the

field propagating through the time machine wormhole and one where the

field goes around the wormhole mouth in the present, it is possible to compare

the two probabilities.

Section 6 studies the first two steps mentioned above, while the third

and fourth steps are treated in Section 7, and the fifth step discussed. As

already mentioned the fifth step involves calculations beyond the scope of

this article, but will be the subject of future work.

6. DECOHERING THE MATTER FIELD

We achieve coarse-graining of the ª first typeº by letting the electromag-

netic field degrees of freedom play the role of the ª environmentº and the

matter field be the ª system,º as described above. That is, we write the

Hamiltonian for the full system as

H 5 H c ,0 1 HA ,0 1 H I (85)

To get the reduced density matrix for the matter fields involves tracing

over the electromagnetic field degrees of freedom. This can be accomplished

using the closed path time formalism (3)
and was done by DioÂsi in his article

on density matrices in QED.
(4)

We cannot directly use DioÂsi’ s results, since he uses the energy-momen-

tum basis and this is not globa lly well defined in curved spacetime. But we

can use some of the calculations and observations. Before we proceed let us

also note the following: We work with a charged scalar particle approaching

a nonchronal region containing a charged wormhole mouth. Therefore we

have only one current j m ( y) and a static electric potential Acl
0 (x). The equations

are further simplified by noting that only the zeroth component of Acl enters

the calculations. To keep the notation simple we use A cl(x) 5 V(x) and Aq 5
A . The task is to investigate if the electromagnetic field will carry information

about the different smeared position states of the particle into the environment.
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If this happens, interference between these smeared position states can no

longer be observed at the system itself.

The scalar field couples nonminimally to the curvature of the wormhole

through the term j R c *(x) c (x). Looking at Eq. ( ) and using the forms

for the redshift and shape functions (12) and (13), we see that the scalar

curvature is

R 5
2Q2

) xr0 ) 4
(86)

Since R is seen to go as r 2 4
, it is also obvious that the gravitational

effects only affect the dynamics of the scalar particle when it gets very close

to the position of the wormhole mouth. The Coulomb potential V(x) goes as

) r ) 2 1, so we can perform the trace over the environmental degrees of freedom

close to the NC region, but still treat it as flat space, since there the electromag-

netic potential dominates over any gravitational effects. So when trying go

solve r red 5 tr e (K
t1
ti [ r (ti)]) the picture is a scalar particle approaching a static

charge density in approximately flat space.9

First we turn the photon vacuum state in the interaction picture into a

vacuum state in the SchroÈ dinger picture:

) 0A & I 5 eH 2 i # [ADÃA 1 Vj 1 Aj ] d 3m(x) J ) 0A & S (87)

with DÃdenoting the differential operator acting on the A field. Again inserting

the form of U into the right-hand side of Eq. ( ), completing the square

using (87), and using the notation ( ), we now obtain the follow ing

expression for the reduced density matrix for the charged scalar particle

(discarding terms containing jj or VV ):

r red(t) 5 TÃexpH i

2 # x0 ,y0 , t

d 4m(x) d 4m( y)[D (F )(x, y)V+(x)j+( y)

1 D (FÅ )(x, y)V 2 (x)j 2 ( y) 2 D ( 1 )(x, y)V+(x)j 2 ( y)

2 D ( 2 )
(x, y)V 2 (x)j+( y)]} r (tin) (88)

Note that we have used D(x, y) instead of D(x 2 y) since the distance

between points is not well defined in curved space.

Again evaluating the super-evolution operator to order e2, we get

9 The calculations were attempted in curved space, but it turned out to be an impossible task.
However, the calculations are carried out in as general a setting as possible.
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r ( ` ) 2 r ( 2 ` ) 5
i

2 # dm(x) dm(y)[D (F )(x, y)T(V(x)j( y)) r ( 2 ` )

1 D (FÃ)
(x, y)TÅ (V(x)jÅ ( y)) r ( 2 ` )

2 D ( 1 )(x, y)V(x) r ( 2 ` )j( y)

2 D ( 2 )(x, y)jÅ ( y) r ( 2 ` )V(x)] (89)

The next step is to evaluate this expression in the localization basis

{ x K i}, so we can study the components of the reduced density matrix. To

keep the notation simple, we use ) n & 5 ) x Kn & . So, evaluating the expression

between states ^ n ) and ) m & , we and are led to

r ( ` )nm 2 r ( 2 ` )nm

5
i

2 # dm(x) dm ( y)

3 F o
r, s, t

^ n ) D (F )(x, y) ) r & ^ r ) V(x) ) s & ^ s ) j( y) ) t & ^ t ) r ) m &

1 ^ n ) D (FÅ )
(x, y) ) r & ^ r ) jÅ ( y) ) s & ^ s ) V(x) ) t & ^ t ) r ) m &

2 ^ n ) D ( 1 )(x, y) ) r & ^ r ) V(x) ) s & ^ s ) r ) t & ^ t ) j ( y) ) m &

2 ^ n ) D ( 2 )
(x, y) ) r & ^ r ) jÅ ( y) ) s & ^ s ) r ) t & ^ t ) V(x) ) m & G

5
i

2 # dm(x) dm ( y) F o
r,s, t

D (F )
nr (x, y)Vrs(x)jst( y) r tm( 2 ` )

1 D (FÅ )
nr (x, y)Vst(x)jÅ rs( y) r tm( 2 ` )

2 D ( 2 )
nr (x, y)Vrs(x)j tm( y) r st( 2 ` )

2 D ( 2 )
nr (x, y)V tm(x)jÅ rs( y) r st( 2 ` ) G (90)

First we evaluate the photon propagators. For D (F )
and D (FÅ )

we have

D (F )(x, y) 5 i[ u (x, y) ^ 0A ) A0(x)A0( y) ) 0A & 1 u ( y, x) ^ 0A ) A0( y)A 0(x) ) 0A & ] (91)

D (FÅ )(x, y) 5 i[ u Å ( y, x) ^ 0A ) A0(x)A0( y) ) 0A & 1 u Å (x, y) ^ 0AA0( y)A0(x) ) 0A & ] (92)

where
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u (x, y) 5 H 1 if x0 . y0 (that is, y takes place before x)

0 otherwise
(93)

and u Å 5 2 u . Using Eq. (32), we can write the A field as

AÃ
0(x) 5 o

i

[ a Ã0, i(x0) x i (
­

x ) 1 aÃ²
0 , i(x0) x i (

­
x )] (94)

Therefore we get

D (F )(x, y) 5 i[ u (x, y) ^ 0A ) A 0(x)A0( y) ) 0A & 1 u ( y, x) ^ 0A ) A0( y)A0(x) ) 0A & ]

5 i o
i, j

^ 0A ) a0, i(x0)a
²
0 , j( y0) x i (

­
x ) x j (

­
y )

1 a0, j( y0)a
²
0, i(x0) x j (

­
y ) x i(

­
x ) ) 0A & (95)

To study this, we need to define the commutator relations between a0, j( y0)

and a ²
0, i(x0). Recalling Eq. (7), it can be seen that the commutator must in a

sense be the inner product between the arguments of the operators:

[a0, i(x0); a ²
0, j( y0)] 5 g00 D (x0, y0) # K i ù D

1
(K j)

d 3m(x) (96)

where D (x0, y0) is a smeared Dirac delta distribution, which, properly renor-

malized, is 1 for x0 5 y0 and goes to 0 when x0 and y0 are very far apart,

and D+(K j) is the future domain of dependence. Then we get [where VÄ ol(K i) 5
3 Vol(K i)/4 p 5 1, unit balls]

[a0, i(x0); a ²
0, j( y0)]

5 g00 5
1, i 5 j, x0 5 y0

VÄ ol(K i ù D+(K j)) i Þ j, x0 5 y0

D (x0, y0)VÄ ol(K i ù D+(K j)) i Þ j, x0 Þ y0

D (x0, y0) i 5 j, x0 Þ y0

(97)

Thus for i 5 j and x0 5 y0 the commutator is equal to 1, so Vol(K i ù D+(K j))

is the generalized version of d 3(
­

x 2
­

y ). With the commutator (97) we can

write the propagators as

D (F )(x, y) 5 i o
i , j

x i (
­

x ) x j (
­

y )( D (x0, y0) Vol(K i ù D+(K j))

1 D ( y0, x0) Vol(Kj ù D+(Ki))) (98)

For D (FÅ )(x, y), we recall that it is defined on the negative time branch

( ` ) to ( 2 ` ). So u ( y, x) 5 1 when y0 , x0, and thus except for a sign we

get the same result as for D (F )
(x, y):
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D (FÅ )(x, y) 5 2 i o
i, j

x j (
­

y ) x i (
­

x )( D ( y0, x0) Vol(Kj ù D+(K i))

1 D (x0, y0) Vol(K i ù D+(K j))) (99)

The components of these propagators then have the form

D (F )
nr 5 i o

i, j

x i (
­

x ) x j (
­

y )( D (x0, y0) Vol(Ki ù D+(Kj) ù Kn ù K r)

1 D ( y0, x0) Vol(K j ù D+(K i) ù Kn ù K r)) (100)

D ( 6 )
can be evaluated using eqs. ( ) and ( ) and Fourier-trans-

forming them back to x-space:

D ( 2 )(x, y) 5 i ^ 0A ) A(x)A ( y) ) 0A &

5 2
1

(2 p )
4 # dp e 2 ip (x 2 y)[2 p i u ( p0) d ( p2)]

which tells us that p0 5 6 )
­

p ) since d ( p2) 5 d ( p2
0 2

­
p 2), where we must

choose p0 5 1 )
­

p ) . So we get

2
i

(2 p )3 # dp0 d
­

p e 2 ip(x 2 y)
[ u ( p0) d ( p2

0 2 )
­

p ) 2)]e 2 i(p0(x0 2 y0) 2 ) ­
p ) ) ­

x 2
­

y ) )

5 2
i

(2 p )3 # d
­

p e 2 i ) ­
p ) (x0 2 y0) 1 i

­
p ? (

­
x 2

­
y )

5 2
i

(2 p )3 # d )
­

p ) )
­

p ) 2 d cos u pd w p e 2 i ) ­
p ) (x0 2 y0) 1 i ) ­

p ) ) ­
x 2

­
y ) cos u p

5 2
i

(2 p )
2 # d )

­
p ) )

­
p ) 2 d cos u p e 2 i ) ­

p ) (x0 2 y0 ) 1 i ) ­
p ) ) ­

x 2
­

y ) cos u p (101)

The cosine integration can easily be performed:

#
1

2 1

e 2 i ) ­
p ) ((x0 2 y0) 2 ) ­

x 2
­

y ) cos u p ) dcos u p

5
1

i )
­

p ) ? )
­

x 2
­

y )
(ei ) ­

p ) ) ­
x 2

­
y ) 2 e 2 i ) ­

p ) ) ­
x 2

­
y ) ) (102)

Inserting this in Eq. (102) and remembering that )
­

p . 0 yields

2
i

(2 p )
2 # d )

­
p ) )

­
p ) 2 d cos u p e 2 i ) ­

p ) (x0 2 y0) 1 i ) ­
p ) ) ­

x 2
­

y ) cos u p

5 2
1

(2 p )
2 #

`

0

d )
­

p ) )
­

p ) 2 1

)
­

p ) ? )
­

x 2
­

y )
e 2 i ) ­

p ) (x0 2 y0)(ei ) ­
p ) ) ­

x 2
­

y ) 2 e 2 i ) ­
p ) ) ­

x 2
­

y ) )
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5 2
i

2 p 2 )
­

x 2
­

y ) #
`

0

)
­

p ) e 2 i ) ­
p ) (x0 2 y0 ) sin( )

­
p ) ? )

­
x 2

­
y ) )

5 2
i

2 p 2 )
­

x 2
­

y

2i )
­

x 2
­

y ) (x0 2 y0)

( )
­

x 2
­

y ) 2 (x0 2 y0))
2
( )

­
x 2

­
y ) 1 (x0 2 y0)

2
)

5
(x0 2 y0)

p 2( )
­

x 2
­

y ) 2 (x0 2 y0))
2( )

­
x 2

­
y ) 1 (x0 2 y0))

2
(103)

Since

D ( 1 )(x, y) 5 2
i

(2 p )
3 # dpe 1 ip (y 2 x)[ u ( 2 p0) d ( p2)]

5 2
i

(2 p )
3 # dpe 2 ip(x 2 y)[ u ( 2 p0) d ( p2)] (104)

we have again p0 5 6 )
­

p ) , now choosing p0 5 2 )
­

p ) , but otherwise the calcula-

tions are identical to the above except for a sign, so we get

D ( 1 )
(x, y) 5 2

x0 2 y0

p 2( )
­

x 2
­

y ) 2 (x0 2 y0))
2( )

­
x 2

­
y ) 1 (x0 2 y0))

2
(105)

These propagators contain know ledge of both the spatial and the temporal

separation of the ª eventsº x and y. Since only distance is important , we can

evaluate these propagators in 1 1 1 dimensions. Here the sets x k s around x

and x k t around y are simple open sets of R , x k s 5 ]as , bs[ and x k t 5 ]at ,

bt[. Thus we are led to

D ( 2 )(x, y)st 5 ^ s ) tx 2 ty

p 2
((x 2 y) 2 (tx 2 ty))

2
((x 2 y) 1 (tx 2 ty))

2 ) t & (106)

5
D t

p 2 #
bs

as

dx #
b t

at

dy
1

((x 2 y) 2 D t)2((x 2 y) 1 D t)2 (107)

5
1

4 p 2( D t)2 #
bs

as

dx 1 D t

x 2 b t 2 D t
1

D t

x 1 t 2 b t

2 log(b t 2 D t 2 x) 1 log(bt 1 D t 2 x) 2
D t

x 2 a t 2 D t

1
D t

x 1 t 2 a t

2 log(a t 2 D t 2 x)

1 log(a t 1 D t 2 x) 2 (108)
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5
1

4 p 2
( D t)2 (a t log(bs 2 a t 2 D t) 1 bs log( 2 bs 1 a t 2 D t)

2 bt log(bs 2 b t 2 D t) 2 bs log( 2 bs 1 b t 2 D t)

2 at log(bs 2 a t 1 D t) 2 bs log( 2 bs 1 a t 1 D t)

1 bt log(bs 2 b t 1 D t) 1 bs log( 2 bs 1 b t 1 D t) (109)

5
1

4 p 2
( D t)2 as log F (b t 2 as 2 D t)(a t 2 as 1 D t)

(at 2 as 2 D t)(b t 2 as 1 D t) G
1 bs log F (a t 2 bs 2 D t)(b t 2 bs 2 D t)

(b t 2 bs 2 D t)(a t 2 bs 1 D t) G
1 at log F (as 2 at 1 D t)(bs 2 a t 2 D t)

(as 2 a t 2 D t)(bs 2 a t 2 D t) G
1 bt log F (as 2 bt 2 D t)(bs 2 b t 1 D t)

(as 2 b t 1 D t)(bs 2 b t 2 D t) G (110)

This will only contribute if as , a t , bs. If we choose as 5 0 and at 2
as 5 d x, then at 5 d x, bs 5 2, and b t 5 2 1 d x. We also recall that D t 5
(x0 2 y0), which can be negative or positive. If we replace D t with ) D t ) in

Eq. (110) then we can handle both D ( 1 ) and D ( 2 ) simultaneously:

D ( 6 )
nr (x, x0; y, y0) 5

1

4 p 2 D t2 H 2 2 d x sign( D t) log[2 2 d x 1 ) D t ) ]

1 4 sign( D t) log F ( d x 1 ) D t ) )( 2 d x 1 ) D t ) )
( 2 2 2 d x 1 ) D t ) )( 2 2 2 d x 1 ) D t ) )

1 4 d x sign( D t) log( 2 d x 1 ) D t ) ) J (111)

For K r 5 Kn we get

D ( 6 )
nn (x, x0; x, y0) 5

1

p 2( D t2 2 4)
1 sign( D t)

log[2 1 ) D t ) ]
4 p 2 D t2

2 sign( D t)
log ) D t )

4 p 2
det

2 (112)

From Eqs. (111) and (112) we see that D ( 6 ) diverges for D t ® 0, which

corresponds to moving the charge very close to the electric potential. Thus



2150 Flagga

if we wanted to investigate this we would need some kind of regularization.

Another interesting feature is that we must have D t . d x Þ D t 2 d x . 0.

This is a causality demand on the photon, stating that it is ª off-shellº as it

travels from the region Ks to the region K t , thus either K t , D+(Ks) or Ks ,
D+(K t). We see that D ( 6 )

ss maximizes D (( 6 )
st (D (( 6 )

ss is where d x 5 0), thus to a

good approximation these propagators are diagonal in the smeared position

basis.

Next we evaluate the static electric potential terms of the form

V(x)st 5 ^ s ) V(x) ) t & 5 # x s(x)V(x) x t(x) d 3m(x)

5 eZ # Ks ù K t

1

)
­

x 2
­

x r0 )
d 3m(x)

5 eZ # Ks ù K t

r 2

! r 2 1 r 2
0 2 2rr0 cos u

dr d cos u d w (113)

This integral is not easily solved, but the Coulomb potential can be

assumed to be highly localized around the wormhole throat xr0. We can

therefore get rid of the x integration in ( ). As a result only sets Ks which

are approximately centered around xr0 will contribute to Eq. (113); thus

# Ks ù K t

V(x) d 3m(x) 5 5
0 if K s ù K t 5 0¤
¿ 1 if Ks ù K t Þ 0¤ but s Þ t

diverges for K s 5 K t but xr0 ¸ K s

ª 1º for K s 5 K t and xr0 P Ks

(114)

where ª 1º simply denotes the maximal value of Vst. Thus V(x) is to a good

approximation diagonal in this basis, Vst ’ 0, s Þ t. But this also affects the

other terms in the RHS of Eq. (90), which to this approximation now yields

i

2 # dm( y) F o
r, s, t

D (F )
nr (x, y)Vrr(x)jrt( y) r tm( 2 ` )

1 D (FÅ )
nr (x, y)Vss(x)jrs( y) r sm( 2 ` )

2 D ( 1 )
nr (x, y)Vrr(x)jtm( y) r rt( 2 ` )

2 D ( 2 )
nr (x, y)Vmm(x)jrs( y) r sm( 2 ` ) G (115)

and using Eq. (112), this can be even further reduced:
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i

2 # dm( y) F o
r, t

D (F )
nr (x, y)Vrr(x)jrt( y) r tm( 2 ` )

1 D (FÅ )
nr (x, y)Vss(x)jrs( y) r sm( 2 ` )

2 D ( 1 )
nn (x, y)Vnn(x)j tm( y) r rt( 2 ` )

2 D ( 2 )
nn (x, y)Vmm(x)jns( y) r sm( 2 ` ) G (116)

Since the photon propagator term only contained 0-components , the

current term ^ n ) j( y) ) r & 5 jnr( y) is also rather easy, yielding only

i ^ x Kn ) p c 2 p * c * ) x Kr & (117)

The first term is

^ x n ) p c ) x Kr &

5 i # dm( y) dm( y8) dm( y - ) ^ x n ) y & ^ y ) p y8 & ^ y8 ) c ) y9 & ^ y9 ) x r

5 i # x n( y) ^ y ) p ) y8 & ^ y8 ) c ) y9 & x r( y9) dm ( y) dm( y8) dm ( y - )

5 i # x n( y) p ( y) d ( y, y8) c ( y8) d ( y8, y9) x r( y9) dm( y) dm ( y8) dm( y9)

5 i # x n( y) p ( y) c ( y) x r( y) d 3m( y)

5 i # x Kn ù Kr( y) p ( y) c ( y) d 3m( y)

5 i # x Kn ù Kr o
i, j

( ­ 0b
²
j (y0) x j (

­
y ))b i (y0) x i (

­
y ) d 3m( y)

5 i o
i , j

( ­ 0b
²
j (y0))b i (y0) # x Kn ù K i ù K j ù Kr(

­
y ) d 3m( y) (118)

In the second-to-last line we have used that

­ 0(b
²
j x j) 5 ­ 0 # b ²

j x i dm ( y) 5 # K j

( ­ 0b
²
j ) d 3m( y)

The second term in Eq. (117) is
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2 i ^ x n ) p * x * ) x r &

5 i # x n( y) p *( y) c *( y) x r( y) d 3m( y)

5 i o
j,i

( ­ 0b i (y0))b
²
j ( y0) # x Kn ù K i ù K j ù Kr(

­
y ) d 3m( y)

and we shall use the notation

i ^ x Kn ) p c 2 p * c * ) x Kr &

5 i o
ij

( ­ 0b
²
j ( y0))b i (y0) a (n, i, j, r)

2 i o
ji

( ­ 0b i (y0))b
²
j ( y0) Vol(Kn ù K i ù Kj ù K r)

5 i o
ij

jÄ i, j Vol(Kn ù Ki ù K j ù Kr) 5 ijÄnr (120)

so that jÄrt 5 2 ijÄnr .

Inserting Eqs. (104), (118), and (113) into the RHS, of Eq. (90) gives

us the follow ing master equation for the various components of the density

matrix in the smeared position representation:

r Ç nn 5 2 o
t

G t r tn 2 o
r

G r ® n r nr 1 o
r

G n ® r r rn (121)

r Ç nm 5 2 o
t

G t r tm 2 o
r

G r ® m r nr 1 o
r

G m ® r r rm m Þ n (122)

where we have used the following

G t 5
i

2 o
r # d 3m( y) (D (F )

nr (x, y)Vrr(x)jÄ rt( y) 1 D (FÅ )
nr (x, y)jÄ rt( y)V tt(x)) (124)

G r ® n 5
1

2 # d 3m( y) D ( 1 )
nn (x, y)Vnn(x)jÄ rn( y) (125)

G n ® r 5
1

2 # d 3m( y) D ( 2 )
nn (x, y)jÄnrVmm(x) (126)

The picture is, that as the scalar particle approaches the charged mouth

of the time machine wormhole it interacts with the Coulomb field and Brems-

strahlung is produced. The phase relations characterizing the superposition

of the different smeared position states of the system are carried away into

the environment, making it approximately possible to localize the scalar field.

Only the terms containing the D ( 6 )
propagators contribu te to the destruction
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of the off-diagonal elements. As can be seen from Eq. (112) these terms fall

off the farther apart x0 and y0 are. The current terms also have their maximal

value when r is close to m , as can be seen from Eq. (120). So what we have

is a ª smearedº diagonal as jÄnr falls off asÄ ol(K r ù K n) ¿ 1.10

Note. We have been not been very specific about the nonchronal region

NC. To achieve decoherence through the interaction between the charge of

the wormhole and the matter field, we can see that it requires the particle to

be ª closeº to the wormhole. But on the other hand we must still try to achieve

this before the particle enters the nonchronal region, since we are using the

interaction Hamiltonian to achieve decoherence. Two assumption has been

made which do need further investigation:

x It is possible to move the trace over the environmental degrees of

freedom through the nonunitary evolution operator X .

x The closed path time formalism can be used in a spacetime back-

ground given here.

The last assumption should be acceptable, since an integral around a nontrivial

topolog ical region only gives rise to an extra phase.
(11)

Note also that the

evolution operator X is intrinsically nonunit ary, and not due to loss of

information.

7. THE HISTORIES AND THE EFFECTS OF THE TIME

MACHINE

Having established the form of the reduced density matrix for the matter

field r red, we turn our attention to the decoherent histories. Going through

these calculations in detail would require more space than is available here,

but I shall outline the steps, and conclude this section with a discussion on

some of the properties of the time machine wormhole not previously

mentioned.

The projection operators to should be of the form Pk
a k 5 Pk

x
Kk

. These

project onto states of each of the Hilbert spaces in the Fock space ^(*),

which are localized in the set Kk.

P x i: * ® *k 5 { c P * ) supp c , Kk} (127)

Note that these projection operators viola te (56), since the basis { x K i} is over-

10 It should also be emphasized that the program of decoherence usually is used to make, e.g.,
a dust particle’ s position decohere when it interacts with photons. In the light of the articles
by Diosi and Anastopoulos, I found it worth studying if decoherence could be used ª the
other way roundº if the coarse-graining used was sufficiently ª coarse.º
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complete. This will make the decoherence only approximate, but is other-

wise allowed.
(7),11

So on each space like hypersurface we have a set of projections P x
Ki

.

A given history C x would then correspond to threading a certain (smeared)

path through spacetime through K1 at s 1, K2 at s 2, etc., up to a certain set

K 2 on s 2 , with unitary evolution operators U( s k , s k 2 1) to generate ª move-

mentº from one hypersurface to the next. Then we encounter the nonchro-

nal region.

Now recall the forms of the decoherence functional generalizing Hamil-

tonian quantum mechanics to nonchronal spacetime regions, with r red(t1) 5
eL r (tin).

$( a , a 8) 5 N tr[(Pn
x nK

Ä s n
s n 2 1( ? ? ? Pk 1 1

x k 1 1K
Ä s k 1 1
s 1 XÄ s 1

s 2 KÄ s 2
s k ( ? ? ? P1

x 1[ r red(t1)]P1
x 8

1)

3 ? ? ? )Pk
x 8k)P

k 1 1
x k 1 1 ? ? ? )P n

x 8n] (128)

The evolution operators through the regions before and after NC should

only act on the system:

U( s n , s n 2 1) 5 exp F 2 i # s n 2 1 , s n

d 4m(x) *Ä G (129)

where *Ä should be of the form *Ä 5 * c ,0 1 *Ä I , where now *Ä I 5 jDV 1
VDj. The r red which appears in the decoherence functional is then further

reduced every time a new alternative Pk
x k is ª addedº to the chain.

For X we shall make use of an article by Antonsen and Bormann (2) in

which a wormhole time-machine Hamiltonian was constructed. Spacetime is

divided into regions, region 1 in the present, containing one of the wormhole

mouths, region 2 in the past, containing the other mouth, and a number of

other regions which are the rest of the universe. A particle entering region

1 at time t then has the probability b of entering the wormhole and appearing

11 Another possibility was put forward by Anastopoulos,(1) who assumes a cubic lattice with
side length L on spatial hypersurfaces of Minkowski spacetime. The centers of each of the
cubes are identified with the point coordinates (nL, mL, rL), n, m, r P Z . A function on the
hypersurfaces ( is introduced as [ ? ]: ( ® ( , which takes a point

­
x and assigns it at the

point [
­

x ] of the center of the cube of the lattice in which
­

x belongs. The paper is especially
interesting since he elaborates on the spatial scales and on their relation to the time scale.
One demands, that lt

¿ lav, where lav is the scale within which microscopic processes are
averaged out (coarse-grained). Finally one has lobs, the scale corresponding to the level of
observation, which is determined by the external constraints to the system. Then one finds
a coarse-graining operator which assigns to each field in spacetime a number of operators
which correspond to the smearing of the field over a lattice cube and are assumed to lie on
its center. In this way the set of projections is both exhaustive and exclusive. However, this
approach is not very intuitive and I shall proceed using the overexhaustive and nonexclu-
sive operators.
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in region 2 at time t 2 T, thus traveling backward in time, while a is the

probability for a particle entering region 2 to enter the wormhole there and

travel forward in time. Since the mouths are taken to lie deep inside the

regions 1 and 2, a , b , 1. Then the Hamiltonian is written.(2)

H 5 a a ²
1(t 1 T )a2(t) 1 b a ²

2(t 2 T )a1(t) 1 g o
N

t 5 1

a ²
i (t)ai (t) (130)

where g counts the number of quanta in the region i, and with a commutator

relation for the creation and annihilation operators of the form

[a i (t), a ²
j (t8)] 5 d ij D (t 2 t8) 1 d i1 d j2 D (t8 2 (t 1 T ))

1 d i2 d j1 D (t8 2 (t 2 T )), e, j 5 1, 2, . . . , N (131)

Modifications of this allow us to write the nonunitary evolution opera-

tor as

X( s +, s 2 ) 5 exp F 2 i # s 2 , s 1

d 4m(x)*Ä 1 *w) G (132)

with

*w 5 a b ²
Kw 2

( s w 2 ( )bKw 1
s w) x w 1 (x) x w 2 (x) (133)

where a now is the amplitude for the matter particle to enter the wormhole

in the region Kw 1 .

The wormhole mouth in the present is deep inside the set Kw 1 on the

surface s w , while the mouth in the past reside deep inside Kw 2 on the surface

D s w ª beforeº s w. The surfaces s w and D s w are ª fictitious,º since they are

merely included to ª placeº the wormhole mouths; we do not have actual

time parameters t and T as in Eq. (130), and we do not expect the surfaces

to be spacelike. If the particle enters the set Kw 1 in the surface s w , it has

the amplitude a to reappear in the region Kw 2 in the surface D s w , i.e., it has

moved backward in ª timeº . It is not difficult to generalize this to also include

travel forward in time, as can be seen from Eq. (130), from the set

Kw 2 to Kw 1 .

The commutator relations between the creation and annihilation opera-

tors for the matter field are

[bi , ( s ); b ²
j ( s 8)] 5 D ( s , s 8) # K i ù D

1
(K j)

d 4m(x)

1 D ( s 8, s 2 ( ) # K i ù K j ù D
1

(Kw 2 ) ù D
1

(Kw 1 )

d 4m(x)(134)
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Outside the nonchronal region only the first term on the RHS of (134)

contributes to the commutator, the last term contains the contributions from

the time machine.

That X is nonunitary is due to the fact that the Hamiltonian governing

the evolution from s 2 to s + is not Hermitian:

Hw 5 # d 3m(x) [ a b ²
Kw 2

( s w 2 ( )bKw 1
( s w) x w 1 (x) x w 2 (x)] (135)

Þ H ² 5 # d 3m(x) [ a b ²
Kw 1

( s w)bKw 2
( s w 2 ( ) x w 1 (x) x w 2 (x)]

Þ H

Looking at Eq. (130), it would seem as though unitarity of X could be

achieved if in Eq. (133) we added a term for going from the past to the

present and assuming a 5 b . However, Antonsen and Bormann (2) show that

H remains antisymmetric, since they find that there are more quanta exiting

the time machine than there are entering it.

The existence of a nonchronal region in the future has a profound effect

on the probabilities of alternatives in the present and as a result also the

decoherence properties. Assume that spacetime contains a single nonchronal

region in the future. We can then ask for the probabilities for a set of

alternatives {P a } that all occur before the NC region.

If the set of alternatives decohere, we have

p( a ) 5 $( a , a ) 5 N tr[XC a r 0C a ² X ² ] (136)

If X had been unitary we could have used the cyclic property of the trace to

show that p( a ) 5 tr(C a r 0C
²
a ), and since the unitary evolutions occur between

the alternatives defined on surfaces s before the final s n in the chain, there

is no dependence on the future geometry of spacetime. So in a sense unitary

evolution implies causality.(9)

But since X is not unitary, the probabilities p( a ) will in fact come to

depend on the future. If we write r f 5 X ² X the cyclic property of the trace yields

p( a ) 5 N tr[ r f C a r 0C
²
a ] (137)

where now N 2 1 5 tr( r f r 0). That is, we need information about the past r 0

and the future r f to be able to predict probabilities in the present. Note that

it is information about the spacetime geometry of the future, not specific

alternatives that happen, that is needed. That probabilities in the present are

independent of specific alternatives occurring in the future is guaranteed by

the sum rule that follows from decoherence:
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Let { a } denote a set that we have access to in the present, so that P a

represent the alternatives in the present, and let { b } be another set in the

future, so that P b denotes the future alternatives. If the set { a , b } exhibits

negligible interference, then it decoheres and we can write for the joint

probability

p( a , b ) 5 N tr[P b XP a r 0P a X ² P b ] (138)

An example could be an NC area in our future contained in an impenetra-

ble black box. Observers in the future then have the alternatives of opening

the door and letting fields propagate in or leaving the door closed. Since we

do not know which b is to be chosen, we must sum over them, and get

p( a ) 5 N o
b

tr[P b XP a r 0P a X ² P b ]

5 N tr[XP a r 0P a X ²
] (139)

that is, probabilities in the present are affected by the existence of the nonchro-

nal region in the future, but not whether the door is open or not (Hartle
(9)

and J. B. Hartle, personal communication). So our generalized quantum

mechanics violates causality in the sense described above, in that we need

knowledge of the future. But if this is the case, and if we then restrict our

attention to a set of histories on a single spacelike hypersurface s before the

NC region, {P a ( s )}, then the decoherence functional can be written

$( a , a 8) 5 N tr[XP a ( s ) r 0P a 8( s )X ² ] (140)

and it would automatically decohere if X was unitary, again due to the cyclic

properties of the trace. But since X is not unitary, only certain members in

the set will. Note, however, that the mechanism of decoherence used in the

previous section is essentially local in time, and therefore can be expected

to be unaffected by the presence of the NC region in the future.(9) So the

alternatives that define the quasiclassical domain of the present can still be

expected to decohere even when one or more nonchronal regions reside in

the future.

7.1. Entropy Change and the Direction of Time

That sets of alternatives on a hypersurface before the NC region are

affected by the nonunit ary evolution operator also affect the missing informa-

tion of a system, the entropy. The idea is to find a good measure of the

missing information on a spacelike hypersurface before the nonchronal region

and compare it with the missing information on a spacelike hypersurface

after the nonchronal region.
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Let us again consider a spacetime with only one nonchronal region NC

to our future and spacelike hypersurfaces s 2 before the nonchronal region

and s + after the nonchronal region. On each of these surfaces we consider

decoherent sets of alternatives represented by {P 2
b } and {P 1

b }, both of which

obey (56). Since we assume the sets decohere, the probabilities of these

alternatives can be written (9)

p( a ; s 2 , {P 2
b }) ’ N tr[P 2

a X ² X r ] ’ tr[P 2
a r Ã] (141)

p( a ; s +, {P 1
b }) ’ N tr[P 1

a X r X ² ] ’ tr[P 1
a r Ä ] (142)

Here p( a ; s 2 , {P 2
b })} is the probability for the alternative/proposition a from

the set {P 2
b } on the spacelike hypersurface s 2 , and we use the notation

r Ã5
{ r , X ² X }

tr[X r X ]
(143)

r Ä 5
X r X ²

tr[X r X ² ]
(144)

with { ? , ? } the anticommutator. Next define S( s ; {P b }) as the missing informa-

tion on s relative to the set of alternatives {P b } whose probabilities are { p b }.

S( s ; {P b }) is the maximum of the entropy functional:

6( r Ä ) 5 2 tr[ r Ä ln r Ä ] (145)

defined over all density matrices r Ä that reproduce the probabilities p a 5
tr[P a r Ä ]. If we ask the wrong questions, it is easy to lose information, so to

get a good measure of the missing information independent of the ª questionsº

we ask, we should minimize the missing information on s , S( s , {P b }), relative

to all decohering sets {P b }:

S( s ) 5 min
decoherent

{P b }

(S( s , {P b })) 5 min
decoherent

{P b }

( max
r Ä with

tr[P a r Ä ] 5 p a

6( r Ä )) (146)

What then, is the relation between the missing information S( s 2 and S( s +)

before and after the nonchronal region? Equation (78) shows that for alterna-

tives after the nonchronal region the decoherence functional is the same as

that for usual quantum mechanics, with the modification that we should use

r Ä defined in (144). As discussed above, the cyclic property of the trace shows

that sets of alternatives defined on a single hypersurface after all nonchronal

regions always decohere. Therefore

S( s +) 5 6( r Ä ) 5 6 1 X r X ²

tr[X r X ² ] 2 (147)

The missing information on the hypersurface s 2 before NC is not as



Decohering a Charged Scalar Field in a Time-Machine Wormhole Background 2159

easy to calculate, as S( s +) due to the nontriv iality of the strictures of decoher-

ence. But one can show that
(9)

S( s 2 ) $ S( s +) 5 6( r Ä ) 5 6 1 X r X ²

tr[X r X ² ] 2 (148)

This means that information can be gained, but not lost, in evolving from

the surface s 2 before the NC region to a surface s + after all NC areas.12

When recalling the discussion in the previous section, on how a nonchronal

region to our future could influence present probabilities and the decoherence

of sets of alternatives, the possibility of information gain is not so surprising

after all. On a given spacelike hypersurface s + to the future of all NC areas

any set of alternatives defined on that surface decohere due to the cyclic

property of the trace. But on s 2 only certain sets of alternatives will decohere.

So we have more questions (more sets of alternatives) with which to ask

questions about the quantum systems on s + than we have on s 2 . The missing

information thus decreases corresponding to a decrease in entropy.
13

Looking back at Eqs. (76) and (77), I realized that if the decoherence

in the present is affected by the existence of a nonchronal region to our

future, so also is the formation of the generalized records. As we saw in

section 5.2, decoherence implies the existence of such records and vice versa.

If a set of alternatives decohered, we found the sets C a ) c & to be orthogonal

12 In a spacetime containing several NC areas, Eq. (148) only holds when s + is after all
NC areas.(9)

13 In their article on nonunitarity,(2) in which they define the time machine Hamiltonian, Eq.
(130), Antonsen and Bormann also calculate the entropy S 5 2 tr[ r ln r ]. They conclude,
however, that entropy has been created in evolving from time t8, before the area containing
the time machine probabilities, to time t after. By going through their calculations, however,
it becomes obvious that their result is not in contradiction with Eq. (148), but their interpretation
is wrong: Up to a normalization constant, r is the evolution operator U(t, t8) [which we call
X( s + , s 2 )], so r ln r ’ UH , where H is the Hamiltonian, Eq. (130). Thus (2)

S(t) 5 2 tr[ r ln r ] ’ 2 tr[UH ] (149)

Calculating tr[UH ] and regularizing the result yields

tr[UH ] 5
1

72
(t 2 t8) a b D ( ) t 2 t8 ) 2 T ) (150)

which is positive whenever a , b . 0, and Antonsen and Bormann conclude that entropy has
been generated. But, if tr[UH ] . 0, then

S(t) ’ 2 tr[UH ] , 0 (151)

So if tr[UH ]t for time t after the time machine area is greater than tr[UH ]t8 for time t8 before,
then

2 tr[UH ]t , 2 tr[UH ]t8 « S(t) , S(t8) (152)

So it is in fact negative entropy which has been generated, which corresponds to informa-
tion gain.
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sets, which would then be eigenstates for a suitable set of projection operators

P b defined after the final time in the chain C a . We then found the joint

probability for the set { a } and { b } to be p( a , b ) 5 d a b p( a ). But as we have

just seen, a nonchronal region to our future affects both probabilities and

decoherence properties in the present. Looking at Eq. (77), we see that we

have two cases, one where the nonuni tary evolution takes place before the

P b are added, and one where the nonunitary evolution takes place after this.

Although it looks as though we should simply ask for projection operators

to which XC a ) c & are eigenstates, we just saw that the set { a } may not even

decohere any longer. And if the nonunitary evolution takes place after we

have added the P b we have also seen that probabilities become dependent

on the future geometry of spacetime.

Especially if the records through calculations were expected to be persis-

tent and permanent, how would such a region affect them? Records can be

thought of as information somewhere in the universe (be it photographic

plates, computer memories, or something else) that an event (or chain of

events) occurred. So if there is a nonchronal region in our future it affects

the decoherence of alternatives in the present, the entropy, and also the

generalized records.

8. CONCLUSION

We have set up a program for working with QED in a nontriv ial space-

time. This included introducing the density matrix and the concepts of decoh-

erence of a density matrix and decoherent histories. The latter in particular

allowed a generalization of quantum theory to spacetimes with a bounded

nonchronal region. The role of the environmental degrees of freedom are

played by the electromagnetic field, while the matter field is the system.

After studing the effects of the interaction between the charged wormhole

mouth and the matter field we reached a smeared diagonal reduced density

matrix for the matter field. In other words, an approxim ate localization

occurred.

There are consequences of a nonchronal region in our future. It was

seen to affect not only the probabilities for alternatives and histories in the

present, but also entropy, decoherence of present alternatives, and in turn

also the concept of generalized records. Through this it should in a sense be

possible to set up an experiment to ª measureº such a nonchronal region in

our future by comparing the experimental data with what calculations predict.
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